A bi-level mathematical programming for cell formation problem considering workers’ interest
Authors
Abstract:
Nowadays, the necessity of manufacturers’ response to their customers’ needs and their fields of activities have extended widely. The cellular manufacturing systems have adopted reduced costs from mass-production systems and high flexibility from job-shop manufacturing systems, and therefore, they are very popular in modern manufacturing environments. Manufacturing systems, in addition to proper machinery and equipment, workforces and their performance play a critical role. Staff creativity is an important factor in product development, and their interest in cooperating with each other in the work environment can help the growth and maturity of this factor. In this research, two important aspects of cellular manufacturing take into consideration: Cell formation and workforce planning. Cell formation is a strategic decision, and workforce planning is a tactical decision. Practically, these two sectors cannot be planned simultaneously, and decision making in this regard is decentralized. For this reason, a bi-level mathematical model is proposed. The first level aims to reduce the number of voids and exceptional elements, and the second level tends to promote the sense of interest between the workforces for working together, which will result in synergy and growth of the organization.
similar resources
A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem
Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one o...
full textRobust Design of Dynamic Cell Formation Problem Considering the Workers Interest
To enhance agility and quick responding to customers' demand, manufacturing processes are rearrenged according to different systems. The efficient execution of a manufacturing system depends on various factors. Among them, cell design and human issue are the pivotal ones. The proposed model designs cellular manufacturing systems using three objective functions from three different perspectives,...
full textManufacturing Cell Configuration Considering Worker Interest Concept Applying a Bi-Objective Programming Approach
Generally, human resources play an important role in manufacturing systems as they can affect the work environment. One of the most important factors affecting the human resources is being an interactional interest among the workers in the workshops. If the workers in a manufacturing cell have the highest surface of the interactional interest level, it causes a significant raise in coordination...
full textRobust Optimization Approach for Design for a Dynamic Cell Formation Considering Labor Utilization: Bi-objective Mathematical Model
In this paper, robust optimization of a bi-objective mathematical model in a dynamic cell formation problem considering labor utilization with uncertain data is carried out. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all the possible future scenarios. In this research, cost parameters of the cell formation and demand fluctuation...
full textRobust optimization of a mathematical model to design a dynamic cell formation problem considering labor utilization
Cell formation (CF) problem is one of the most important decision problems in designing a cellular manufacturing system includes grouping machines into machine cells and parts into part families. Several factors should be considered in a cell formation problem. In this work, robust optimization of a mathematical model of a dynamic cell formation problem integrating CF, production planning and w...
full textSolving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization
Mathematical programming and artificial intelligence (AI) methods are known as the most effective and applicable procedures to form manufacturing cells in designing a cellular manufacturing system (CMS). In this paper, a bi-objective programming model is presented to consider the cell formation problem that is solved by a proposed multi-objective particle swarm optimization (MOPSO). The model c...
full textMy Resources
Journal title
volume 28 issue 3
pages 267- 277
publication date 2017-09
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023